An artificial pacemaker is a small device that uses electrical impulses to help control heart dysrhythmias.
A block in the heart’s electrical conduction system or a malfunction of the heart’s natural pacemaker (the SA node) can cause a heart dysrhythmia. The primary purpose of the pacemaker is to sustain an adequate heart rate that will maintain sufficient blood pressure and perfuse all organs adequately.
In some patients, artificial pacemakers are used externally to address a temporary need, and in other patients with permanent conditions, pacemakers are implanted surgically.
Whether temporary or permanent, a pacemaker provides an electrical stimulus traveling through lead wires to stimulate the myocardium (heart muscle) to depolarize and contract.
The parts of a pacemaker include the battery/brains, known as the pulse generator, and lead wires that have electrodes on the ends.
The pulse generator houses the pacemaker’s energy source and controls. The nurse should verify that the rate prescribed matches the rate set on the pulse generator.
The mode of pacing can be set on demand or asynchronous. Demand pacing senses the heart’s impulses and paces only when the patient needs it. Asynchronous pacing mode sets the pacemaker to fire at a fixed rate regardless of the heart’s ability to generate impulses.
Temporary Pacemaker
Temporary pacing is necessary for short-term management of dysrhythmias until the patient’s rhythm is stabilized or a permanent pacemaker can be inserted.
Normally, all types of temporary pacing are by demand, in which the pacemaker delivers electrical current only when the heart’s rate falls below the preset rate. They are typically used for less than three days.
Types of temporary pacing include:
- Transcutaneous
- Transvenous
- Epicardial
- Transesophageal
Transcutaneous external pacing is primarily for unstable rhythms in emergency situations, requiring two electrodes on the chest, either in the anterior/lateral position or the anterior/posterior position.
With a transvenous pacemaker, the pacer wire is inserted through a large vein into the right ventricle, with the leads attached to an external pulse generator box.
Epicardial pacing is most commonly used with cardiac surgery patients undergoing an open thoracotomy. Temporary lead wires are sutured loosely to the outermost layer of the heart, exposed through the skin, and connected to an external pulse generator similar to transvenous pacing.
Transesophageal pacing involves placing an electrode in the esophagus through the nose or by a pill-electrode that is swallowed. The electrode connects to an external pulse generator by a wire. This type of pacing is commonly used only for atrial pacing in sinus bradycardia, supraventricular tachycardia, or for diagnostic studies.
Patient Care
When caring for a patient with a temporary pacemaker, there are several guidelines to follow for safe practice:
Assess the patient’s tolerance of the heart rhythm – This is done by continuous ECG monitoring, and assessing the patient’s mental status, blood pressure, pulse, heart sounds, lung sounds, skin color, warmth, and urinary output.
Check the system for proper functioning – secure all connections, secure generator box to the patient, check the pacing threshold every 12 hours, replace the battery generator or connecting cable for failure to pace, and adjust sensitivity for undersensing or oversensing (and notify the physician).
Maintain electrical safety – Verify that wires are connected and secured to the correct connector ports, keep the insulation cover over the uninsulated ends, wear rubber gloves when handling exposed terminals, do not touch the patient and electrical equipment at the same time, keep ungrounded electrical equipment from contact with the patient, and prevent liquids from coming in contact with the generator, cables, or insertion site.
Monitor for complications at insertion site – assess the site daily for infection, change dressing every 48 hours using central line dressing sterile technique.
Assess patient safety and comfort – Explain the purpose of the pacemaker to decrease anxiety, position patient comfortably to avoid tension on the external wires and generator, provide pain medication or sedation as needed, and provide diversional activities when mobility is limited.
Permanent Pacemaker
Permanent pacemakers are used to treat various bradycardic arrhythmias and are implanted during a short surgical procedure, usually under local anesthesia.
The electronic control center of the pacemaker is called the pulse generator, which is encased in titanium with a lithium iodide battery inside that lasts 5-12 years. The pulse generator is attached to one or more lead wires that are threaded through large blood vessels in the upper chest into the heart.
Small electrodes at the ends of the leads attach to the inner surface of the heart and pick up the heart’s natural electrical signals and deliver the pacing pulse from the generator. The pulse generator is usually placed under the skin below the collarbone.
Most implanted pacemakers are dual-chambered pacemakers, in which an electrode is placed in the right atrium and one in the right ventricle.
If necessary, a third lead can be placed in the left ventricle with a biventricular device.
Patient Education
When caring for a patient with a permanent pacemaker, teach the patient before surgery about:
- The reasons for the pacemaker
- Potential complications
- Pretests, including baseline 12-lead ECG and bleeding function bloodwork
- The need for IV access for fluids, sedation, and emergency medications
- They are to have nothing by mouth for 8 hours before procedure
Preop, Op, and Postop
The nurse will:
- Assess baseline VS, peripheral pulses, and heart and lung sounds.
- Assess the patient’s anxiety level – actively listen, reassure, educate, and give sedation as needed.
- Shave and scrub the access site where the generator will be implanted.
- Maintain a sterile field.
- Keep a cardiac monitor on at all times during the procedure.
Following the procedure:
- Monitor for complications of insertion such as:
- Pneumothorax (collapsed lung)
- Hemothorax (collection of blood in the pleural cavity)
- Perforation from the pacemaker lead
- Cardiac tamponade (pressure on the heart caused by fluid build-up around the heart)
*These complications are seen as shortness of breath, low blood pressure, chest pain, or a rapid heart rate.
- Monitor for lead dislodgement, seen as ECG changes or hiccups if diaphragm is being paced.
- Monitor ECG for loss of sensing, loss of capture, or failure to pace.
- Provide pain medications and interventions as needed.
- Assess insertion site for bleeding and infection.
- Apply ice pack to minimize pain and swelling for first 6 hours.
- Maintain bedrest for 12 hours.
- Restrict movement of the affected arm for 12-24 hours. After 24 hours, assist with gentle ROM exercises 3 times daily, to restore normal movement and prevent stiffness.
- Do not give aspirin or heparin for 48 hours.
- If defibrillation is necessary, avoid the area surrounding generator site.
Discharge instructions to teach the patient:
- Placement of the pacemaker generator and leads, how it works, and the rate at which it is set.
- Monitor site for bleeding and infection for the first week. Bruising may be present.
- Avoid immersing the site in water for 3 days.
- Minimize arm and shoulder activity of affected arm and wear loose covering over incision for 1-2 weeks, to prevent dislodgement of new leads.
- Avoid contact sports and heavy lifting for 2 months after surgery.
- Contact physician with fatigue, palpitations, or recurrence of symptoms (may indicate pacemaker malfunction or battery depletion).
- Take radial pulse daily before arising and notify physician for rates outside those programmed (may indicate pacemaker malfunction or battery depletion).
- Carry pacemaker information at all times and wear a MedicAlert bracelet (pacemaker will trigger some airport security alarms).
- Discuss any possible procedures with cardiologist (some procedures – MRI, electrocautery – may affect the pacemaker).
- Household appliances such as microwave ovens, radios, and gardening tools will not affect the pacemaker. Cell phones currently don’t appear to affect pacemakers.
Modern pacemakers have built-in features to protect them from most types of interference produced by other electrical devices; however, the patient must always be aware of their surroundings and the devices that may interfere.
Pacemaker Precautions and Risks
Devices with possible risk include:
- Anti-theft systems
- Strong metal detectors
- MP3 player headphones (keep at least 3cm away from pacemaker)
- Shock-wave lithotripsy (non-invasive treatment for kidney stones)
- Power-generating equipment
- Arc welding equipment
- Powerful magnets
- Therapeutic radiation (cancer treatment)
- TENS units for pain relief
Avoid high-voltage or radar machinery or working over large running motors. If interference with the pacemaker is suspected, move away from the electrical device or turn off the equipment.
Malfunctions
Signs of pacemaker malfunction include:
- Dizziness
- Fainting
- Fatigue
- Weakness
- Chest pain
- Palpitations
Maintain follow-up care with the physician as recommended. Between office visits, the doctor can keep track of the pacemaker’s operation through transtelephonic monitoring. Pacemaker malfunctions should be reported to the physician, and include loss of sensing, failure to capture, and failure to pace.
Loss of sensing: Pacemaker is either “oversensing” and senses an external signal as an impulse and does not pace or it is “undersensing” the heart’s own impulse and it paces the heart unnecessarily. (As you can see in the example of undersensing, the first 2 beats are paced, then several intrinsic beats occur, but the pacemaker fails to sense these beats, resulting in competition between paced beats and the heart’s intrinsic rhythm.) The nurse should check for electromagnetic interference and proper grounding of equipment. In undersensing, increase the sensitivity of the pacer. In oversensing, decrease the sensitivity of the pacer.
Failure to capture: Pacemaker fires but does not depolarize the ventricle. The nurse should turn patient to left side (to bring lead in better contact with endocardium), check all connections, and increase the energy delivered. (In the example, atrial pacing and capture occur after pacer spikes 1,3,5, and 7. The remaining pacer spikes fail to capture, resulting in no conduction to the ventricles, and no arterial waveform).
Failure to pace: Electrical impulse is never initiated, so there are no pacer spikes shown on the ECG strip. The nurse should keep an external or temporary pacemaker at the bedside, assessing the patient until the cause of the failure is determined and corrected.
Implanted Cardioverter-Defibrillators (ICDs)
Many pacemakers have the added function of an implanted cardioverter-defibrillator (ICD), which is for patients at risk for dysrhythmias that do not respond to antidysrhythmic therapy. The ICD continuously monitors heart activity and can automatically deliver a countershock to correct a perceived dysrhythmia.
The teaching required for the patient with ICD insertion is similar to a permanent pacemaker insertion. However, the shock from an ICD is generally painful and patients should be advised of this in advance. Others in physical contact with the patient will experience a mild sensation with the shock delivery, but no harm is done. Most doctors recommend that patients be shock-free for 6 months before resuming driving. Emotional support is critical for patients and family, as there is often anxiety, depression, fear, and anger associated with ICD placement.
End-of-Life Concerns
Patients may choose to decline a pacemaker with ICD functionality, as they may interfere with the natural process of dying by continuing to function and deliver shocks. As a patient approaches the end of life, healthcare providers should discuss the options with the patient and family.
Remember, when caring for a pacemaker patient in the hospital, the ECG will continue to show pacing spikes and possible electrical activity even without a pulse. The healthcare team may choose to monitor the patient remotely, so as to avoid confusion in family members at the bedside.
Pacemaker technology is changing constantly, but the goal of therapy remains the same: to sustain an adequate heart rate that will maintain sufficient blood pressure and perfuse all organs adequately.
Frequently Asked Questions
Q
What is the difference between a temporary and a permanent pacemaker?
A
Temporary pacemakers are indicated for urgent scenarios in which a life-threatening dysrhythmia is present. They are generally used to stabilize the patient while they are awaiting placement of a permanent pacemaker. Permanent pacemakers are surgically implanted under the skin and are powered by batteries that last for years. They are used most commonly to treat chronic bradycardic arrhythmias.
Q
What nursing care is required after permanent pacemaker insertion?
A
Postoperative nursing care for an individual with a newly placed permanent pacemaker is focused on identifying and avoiding complications and enforcing strict bed rest and restriction of arm movement for 12 to 24 hours. Complications include those from insertion (pneumothorax, hemothorax, perforation, or cardiac tamponade) in addition to dangerous dysrhythmias, infection at the insertion site, and lead displacement. Pain management is also critical for patients immediately post-permanent pacemaker implantation.
Q
Who is a candidate for a permanent pacemaker?
A
The most common candidates for permanent pacemaker placement have symptomatic bradycardia, either in the form of sinus bradycardia or a third-degree AV block. Additional indications include chronic heart failure, heart disease, or carotid sinus syndrome resulting in episodes of syncope. The benefits must outweigh the risks in order for a permanent pacemaker to be recommended, and these risks and benefits must be clearly communicated to the patient when possible.
Q
How long does a permanent pacemaker last?
A
Permanent pacemakers are powered by lithium batteries that are surgically implanted under the skin. The life of the battery varies greatly, lasting anywhere from 5 to 12 years. Generally, a low power indicator will alarm when the battery needs changing. The battery is then accessed and changed through the original incision site in a 45-minute procedure.
Q
What types of temporary pacemakers exist?
A
There are various forms of temporary pacemakers. Transcutaneous pacemakers send shocks externally through pads on the skin. Transvenous pacemakers are implanted internally through a central vein with an external pulse generator box. Temporary pacing can also occur with epicardial wires sutured to the outer layer of the heart (commonly used during open thoracotomies) or transesophageally through the esophagus with an electrode connected to an external pulse generator (often used for diagnostic purposes).
Q
What is the nursing management for a patient with a temporary pacemaker?
A
Temporary transvenous pacemakers must be carefully managed due to the many complications that can occur and the patient’s unstable medical state. The patient’s rhythm must be monitored continuously, the system checked for functionality and effectiveness, the insertion site monitored for infection and lead movement, and the patient kept calm and comfortable.
Q
What is an implantable cardiac defibrillator?
A
The implantable cardiac defibrillator is a pacemaker with the added function of cardioversion/defibrillation. It is indicated for patients at risk for dysrhythmias that don’t respond to medications. When a dangerous dysrhythmia occurs, the machine detects it and provides a shock to convert the rhythm to normal sinus rhythm.
Q
What is oversensing vs. undersensing as pacemaker malfunctions?
A
The pacemaker is either “oversensing” by interpreting an external signal as an impulse and not providing a necessary shock, or “undersensing” by pacing the heart unnecessarily when not sensing the heart’s natural impulse. Oversensing is due to decreased sensitivity of the pacemaker and will show as the lack of a pacer spike in conjunction with the lack of natural conduction on the ECG. Undersensing is due to increased sensitivity in the pacemaker and will show a pacer spike when there is already a naturally conducted waveform on the ECG.
Q
What is failure to capture vs. failure to pace as pacemaker malfunctions?
A
Failure to capture occurs when the pacemaker fires, but not at the energy required. The shock does not depolarize the heart chamber and does not appropriately stimulate a heartbeat. This is signified in a pacer spike that is not followed by a waveform on the ECG. Failure to pace occurs when the electrical impulse is never initiated by the pulse generator; therefore, no pacer spike is shown on the ECG strip.